Contact us

If you have any questions,
or wish to have an appointment

Call us: 0800 0 276 276 
Mon - Fri: 8am - 6pm
Sat: 8am - 4pm
(Free from most phones)

Improving the health of future generations

Participants scanned so far - help us make it to 100,000! Get in touch

The UK Biobank Imaging Study aims to conduct detailed MRI imaging scans of the vital organs of over 100,000 participants, making it the largest of its kind in the world. 

Together with the information we have already collected from our participants, these images will help to improve the diagnosis and treatment of a wide range of diseases.

Take a look at the videos on this site to find out more about the imaging study. All video transcripts are available in the 'Further documents' section.


Hear from participants on how they found their scanning visit and why they would recommend it to a friend!
The UK Biobank imaging study is the largest of its kind in the world, scanning the hearts, brains and bodies of 100,000 participants. Take a virtual tour of the centre in the video below.
Watch this video to hear from expert imaging researchers on how unique and transformative the UK Biobank resource is for health research.
See what the BBC’s Medical Correspondent, Fergus Walsh, had to say when he became the first participant to be scanned
Hear from participants on how they found their scanning visit and why they would recommend it to a friend!
The UK Biobank imaging study is the largest of its kind in the world, scanning the hearts, brains and bodies of 100,000 participants. Take a virtual tour of the centre in the video below.
Watch this video to hear from expert imaging researchers on how unique and transformative the UK Biobank resource is for health research.
See what the BBC’s Medical Correspondent, Fergus Walsh, had to say when he became the first participant to be scanned

Further information

Now hear from our experts.

Find out what the imaging visit is like.
More information about who can be scanned and how to make an appointment
  • Introduction
  • Consent
  • Feedback
  • Eligibility
  • Assessment
Heart & abdomen
Carotid artery


The UK Biobank Imaging Study is one of the most ambitious and exciting health research opportunities in recent years. It will provide an unprecedented level of information to help scientists and doctors working on a wide range of illnesses.

Get in touch

Incidental findings

Abnormalities can show up on scans taken for research during the scanning process. Most of these are no cause for concern. But, if the radiographer does happen to notice a potentially serious abnormality while taking the scans, they will refer the scans after your visit to a specialist doctor (radiologist) for review. If the radiologist agrees that the abnormality is potentially serious we will write to you and your GP to tell you.


“Lovely staff and a pleasant environment, which made everything very easy to do and understand.”
“The staff were all wonderful and put me at ease immediately when I arrived at the centre. Nothing was too much trouble and I felt that I had arrived at a second home."
“Fascinating day - and have been very happy to help.”
"Everybody was extremely professional and proficient in their duties and a credit to the organisation.”


Fotolia 104606944 XS brain scan 1
Smoking, high blood pressure, diabetes and obesity each linked to unhealthy brains

Factors that influence the health of our blood vessels, such as smoking, high blood and pulse pressures, obesity and diabetes, are linked to less healthy brains, according to research published in the European Heart Journal today.

The study examined the associations between seven vascular risk factors and differences in the structures of parts of the brain. The strongest links were with areas of the brain known to be responsible for our more complex thinking skills, and which deteriorate during the development of Alzheimer’s disease and dementia.

The researchers, led by Dr Simon Cox, a senior research associate at the Centre for Cognitive Ageing and Cognitive Epidemiology at the University of Edinburgh (UK), examined MRI scans of the brains of 9,772 UK Biobank participants, aged between 44 and 79. All had been scanned by a single scanner in Cheadle, Manchester, and most of the participants were from the north-west of England. This is the world’s largest single-scanner study of multiple vascular risk factors and structural brain imaging.

The researchers looked for associations between brain structure and one or more vascular risk factors, which included smoking, high blood pressure, high pulse pressure, diabetes, high cholesterol levels, and obesity as measured by body mass index (BMI) and waist-hip ratio. These have all been linked to complications with the blood supply to the brain, potentially leading to reduced blood flow and the abnormal changes seen in Alzheimer’s disease.

They found that, with the exception of high cholesterol levels, all of the other vascular risk factors were linked to greater brain shrinkage, less grey matter (tissue found mainly on the surface of the brain) and less healthy white matter (tissue in deeper parts of the brain). The more vascular risk factors a person had, the poorer was their brain health.

Dr Cox said: “The large UK Biobank sample allowed us to take a comprehensive look at how each factor was related to many aspects of brain structure. We found that higher vascular risk is linked to worse brain structure, even in adults who were otherwise healthy. These links were just as strong for people in middle-age as they were for those in later life, and the addition of each risk factor increased the size of the association with worse brain health.

“Importantly, the associations between risk factors and brain health and structure were not evenly spread across the whole brain; rather, the areas affected were mainly those known to be linked to our more complex thinking skills and to those areas that show changes in dementia and ‘typical’ Alzheimer’s disease. Although the differences in brain structure were generally quite small, these are only a few possible factors of a potentially huge number of things that might affect brain ageing.”

Smoking, high blood pressure and diabetes were the three vascular risk factors that showed the most consistent associations across all types of brain tissue types measured. High cholesterol levels were not associated with any differences in the MRI scans.

To quantify the size of the differences they observed, Dr Cox explained: “We compared people with the most vascular risk factors with those who had none, matching them for head size, age and sex. We found that, on average, those with the highest vascular risk had around 18ml, or nearly 3%, less volume of grey matter, and one-and-a-half times the damage to their white matter – the brain’s connective tissue – compared to people who had the lowest risk; 18ml is slightly more than a large tablespoon-full, or a bit less than a small, travel-sized toothpaste tube.”

He said that the findings showed the potential of making lifestyle changes to improve brain and cognitive ageing.

“Lifestyle factors are much easier to change than things like your genetic code – both of which seem to affect susceptibility to worse brain and cognitive ageing. Because we found the associations were just as strong in mid-life as they were in later life, it suggests that addressing these factors early might mitigate future negative effects. These findings might provide an additional motivation to improve vascular health beyond respiratory and cardiovascular benefits.”

Limitations of the study include the fact that it does not include people over the age of 79 and that UK Biobank participants tend to live in less deprived areas, which may restrict how the findings can be generalised to other populations. As the researchers were measuring brain structures only, and were not carrying out functional brain imaging or tests of thinking skills, they cannot show in this study how the changes in brain structure might impact cognitive function, but other studies have shown the relationship between increased numbers of vascular risk factors and worse or declining thinking skills, and dementia.

Now the researchers plan to measure the links between vascular risk factors and thinking skills in the UK Biobank participants and in other groups too. In addition, they are following older people, and carrying out multiple scans and tests of thinking skills. They hope this will tell them more about the role that vascular risk factors play in the decline of different types of thinking skills and which areas of the brain are implicated. They also hope that the findings will motivate future work to understand the biological mechanisms through which different sources of vascular risk might be related to different brain areas and tissues.

Read the paper: Associations between vascular risk factors and brain MRI indices in UK Biobank

View Article
Paving the way to better treatments for atrial fibrillation

During the UK Biobank imaging assessment we ask participants aged over 60 if they will wear a heart monitor for two weeks. This is to measure the occurrence of atrial fibrillation, a common heart disorder that increases the risks for blood clots, heart failure and stroke, all of which could be fatal. Scientists have already used some of this data along with information from other studies to pinpoint 150 genes linked to this disorder – paving the way for better treatments. By detecting atrial fibrillation in its early stages, it could be possible to avoid severe consequences including stroke and heart failure.

You can see read published papers using imaging data on the main UK Biobank website: published papers

View more details on the heart monitor we may ask some participants to wear here: heart monitor


View Article
 25,000 participants scanned in the UK Biobank imaging study

26 Nov 2018

Thank you to all the participants who have attended an imaging visit so far. If you would like to find out more about the UK Biobank Imaging Study please visit the imaging website:

Imaging researchers react to this milestone:

This globally important resource permits a unique opportunity for world-leading multidisciplinary discovery science, uniquely facilitating analyses across multiple organ systems, combining detailed mechanistic information with the comprehensive imaging, and places the UK at the forefront of biomedical science internationally.

Professor Nick Harvey, Southampton University

It already is 5x larger than the largest population research imaging study conducted anywhere in the world to date.  Such size is essential for gaining sufficient sensitivity to make out the “signatures” of diseases that affect the older UK population well before they happen, when they still can be prevented.

Paul M. Matthews, OBE, MD, DPhil, FRCP, FMedSci

Edmond and Lily Safra Chair,  Division of Brain Sciences, Associate Director, UK Dementia Research Institute

Imperial College London

In the first 25,000 UK Biobank imaging participants, we’ll have scanned 500 people who go on to receive a diagnosis of Alzheimer’s by 2022. This will enable us to identify the signatures of dementia in the brain before individuals begin to get sick.

Professor Karla Miller, FMRIB

View Article
Imaging Study Reveals Potential Biomarker for Liver Health in Metabolic Diseases

26 Nov 2018

An MRI-based measure, corrected T1 (cT1), could be used as a potential biomarker for liver health, a study in collaboration with Massachusetts General Hospital, Perspectum Diagnostics and the University of Westminster has found.

This image shows a patient with cT1 in the normal range and low liver fat. This has been quantified using LiverMultiScan.  

This study involved over 2,800 subjects from the UK BioBank MRI imaging study. The paper has revealed a tight distribution of cT1 values in a sub-population at low risk for non-alcoholic fatty liver disease. In comparison, the cT1 values were significantly elevated in 'higher-risk' sub-populations.

With the burgeoning obesity epidemic, the prevalence of both Non-Alcoholic Fatty Liver Disease (NAFLD), the build-up of fat in the liver, and Non-Alcoholic Steatohepatitis (NASH) inflammation in the liver, are rapidly increasing. Liver disease, including NAFLD and NASH, is usually asymptomatic until the development of cirrhosis, therefore it is critical to identify individuals who are risk and enable early diagnosis. In order to establish which populations are at risk, normality and abnormality need to be ascertained in the context of NAFL and NASH.

Of the population studied, only 37% of participants were classified as being at 'low risk' of NAFLD, i.e. those with a BMI under 25kg/m2and liver fat under 5%. Perspectum Diagnostics' proprietary technology, LiverMultiScan™ was used to calculate the patients' cT1 values. In separate research studies this novel imaging biomarker has been shown to correlate with histology and to predict prognosis (Banerjee, 2014; Pavlides, 2016). The results in this paper showed a tight distribution in the low-risk group, which can act as a baseline comparator in the diagnosis of patients with suspected NAFLD and NASH. The excellent intra-rater and inter-rater reproducibility observed in this study for cT1 provides further support for its utility. Separate research (Pavlides, 2017) has shown that cT1 can distinguish between NAFL and NASH, increasing its utility and adding value to a fat content measure alone to assess fatty liver disease.

Professor Stefan Neubauer, Chief Medical Officer at Perspectum Diagnostics, commented that, "Currently patients with suspected liver disease are biopsied which can cause great pain and distress, and there is a big need for a non-invasive biomarker to enable better care of patients. This study establishes a tight normal range for cT1 in a large low-risk population, an important pre-requisite for an imaging biomarker that can an aid early diagnosis and, hopefully, will reduce the number of patients who are unnecessarily biopsied."

LiverMultiScan corrects for the amount of iron in the liver, as high iron levels can distort the magnetic field and obscure the readings. In this population 36.5% of subjects had sufficiently high iron concentration in their livers to necessitate correction, emphasizing the importance of this method. Iron correction was also needed in cases of mild iron overload that in itself does not pose a clinical problem.

This paper includes an appendix of interesting case studies taken from the Patient Understanding of LiverMultiScan trial and from Massachusetts General Hospital, these case studies show the use of LiverMultiScan and cT1 across a variety of diseases. Dr Amirkasra Mojtahed from the Division of Abdominal Imaging at Massachusetts General Hospital, Boston stated that, "As we move into the era of personalized medicine, it is increasingly becoming important to develop quantitative imaging biomarkers that are uniform across various vendor platforms. This study is an important step in the path for developing a standardized imaging biomarker for liver health and has the potential to replace some of the inherently subjective current methods of assessing liver health."

This manuscript adds to the growing literature on T1 mapping in the liver and displays, for the first time, the reference range of cT1 values in a large population at low risk for NAFL, therefore demonstrating its potential as a biomarker for future studies.

Read the published paper:

Reference range of liver corrected T1 values in a population at low risk for fatty liver disease-a UK Biobank sub-study, with an appendix of interesting cases

View Article

How to find us:

If you would like to speak to someone, please call our free phone Participant Resource Centre on 0800 0 276 276, 8am-6pm Monday to Friday and 8am-4pm on Saturday.

You should call the PRC if you wish to confirm or change your appointment, or update your contact details.

You can email us:

Travel Expenses

If you are travelling to an appointment you can claim reasonable expenses (25p/mile for a car). If coming by train, it would really help us if you could consider booking your ticket in advance, to get the best value for money.

You can book online and pick up your tickets at the station. You can buy "split tickets" that may reduce the overall price you pay. Visit the website: to find out more. Money saved will help us create a better resource for research.

Feedback sent successfully
Form sent successfully