Fotolia 94779358 S2

‘TANTALISING AND EXCITING’ UK Biobank genetic and imaging opens the door to a new era of health research

UK Biobank thanks participants for their continued support of this pioneering study.

Two major publications in the prestigious journal Nature this week focus on the way that UK Biobank genetics and imaging data are transforming health research.

In one paper, researchers report on a pioneering study that combined 10,000 UK Biobank MR brain images with genetics data from all 500,000 participants.

They found a genetic link for some of the most fundamental processes that allow us to think, act and function, from the size of the parts of the central nervous system that control sight, hearing, speech, emotions and actions to the integrity of the communications channels between them and the strength of the signals within. The results will provide a huge impetus to new research for a wide range of degenerative and psychiatric disorders and ultimately improve treatments.

The work is funded primarily by the Medical Research Council (MRC) and the Wellcome Trust.

“We have had a tantalising glimpse of what could be,” said Professor Steve Smith, Oxford University, who led the study. “These game-changing data stored within the UK Biobank resource, and growing in size and value all the time, will revolutionise our understanding of complex brain disorders.” With 20,000 more participants already scanned and 70,000 still to go UK Biobank would transform understanding.

In particular, the researchers studied 3,144 different measures of brain structure and function, resulting in the discovery of more than 100 areas of the human genome that influence the brain:

  • Results revealed the effects of genes coding for a “scaffold for tissue healing” in white matter pathways, affecting diseases such as multiple sclerosis, stroke and motor neuron disease. This scaffold is crucial for the growth of white matter in early life, and for the white matter to heal itself from damage by disease.
  • The researchers mapped for the first time the signature of genetic influences on iron deposits in the brain, for genes related to neurodegenerative disorders such as Parkinson’s disease and Alzheimer’s disease. Researchers hope the work will lead to new insight into how these diseases progress and damage mental capacity, and also help generate new imaging-based ways to evaluate disease treatments in the future.
  • Another finding relates to the effect of the ROBO3 gene on the brain’s white matter pathways. Mutations in the gene mean that pathways that normally connect one side of the brain to the other do not develop properly. This can result in gaze palsy, a disorder which affects the movement of the eyes. It was found that the UK Biobank brain imaging is able to non-invasively localise the effects of this gene to exactly the pathways affected in this disorder.
  • The work also localised effects in the brain of genes that have been linked to both early-life brain development and mental health disorders such as depression and schizophrenia.

There was praise for the work from UKRI Chief Executive Professor Sir Mark Walport, and Sara Marshall Head of Clinical Research and Physiological Sciences at Wellcome. “The research published today brings together a combination of genetic and brain imaging data at an unparalleled scale, and allows us to ask questions about common brain disorders such as Parkinson’s disease, depression and Alzheimer’s disease in a completely new way,” she said.

 “Thanks to the vision of UK Biobank’s funders, the altruism of the study participants and the contributions of a large number of scientists who have helped us along the way, UK Biobank is coming of age as a force in health research,” Professor Rory Collins, UK Biobank Principal Investigator said.

View the paper in Nature: